Ph	eface to the Princeton Edition	viii
Œ.	latroductions and explanations	
	I. Grattan-Guinness	
	0.1. Possible uses of history in mathematical education	2
	0.2. The chapters and their authors	3
	0.3. The book and its readers	7
	0.4. References and bibliography	8
	0.5. Mathematical notations	9
1	Techniques of the calculus, 1630–1660	
	Kirsti Møller Pedersen	
	1.1. Introduction	10
	Mathematicians and their society	12
	Geometrical curves and associated problems	13
	1.4. Algebra and geometry	15
	15. Descartes's method of determining the normal, and	16
	Hudde's rule	
	1.6. Roberval's method of tangents	20
	1.7. Fermat's method of maxima and minima	23
	1.7. Fermat's method of maxima and minima 1.8. Fermat's method of tangents	26
	1.9. The method of exhaustion	31
	1.10. Cavalieri's method of indivisibles	32
	111. Wallis's method of arithmetic integration	37
	1.12. Other methods of integration	42
	1.13. Concluding remarks	47
Z.	Newton, Leibniz and the Leibnizian tradition	
	H. J. M. Bos	
	21. Introduction and biographical summary	49
	22 Newton's fluxional calculus	54
	23. The principal ideas in Leibniz's discovery	60
	24. Leibniz's creation of the calculus	66
	25. l'Hôpital's textbook version of the differential calculus	70
	2.6. Johann Bernoulli's lectures on integration	73

	2.7	Euler's shaping of analysis	75		
	2.8.	Two famous problems: the catenary and the brachistochrone	79		
	2.9.	Rational mechanics	84		
	2.9.	What was left unsolved: the foundational questions	86		
	2.10.	Berkeley's fundamental critique of the calculus	88		
	2.11.	Limits and other attempts to solve the foundational questions	90		
	2.13.	In conclusion	92		
3.	The pro	emergence of mathematical analysis and its foundational ogress, 1780–1880			
		I. Grattan-Guinness			
	3.1.	Mathematical analysis and its relationship to algebra and geometry	94		
	3.2.	Educational stimuli and national comparisons	95		
	3.3.	The vibrating string problem	98		
	3.4.	Late-18th-century views on the foundations of the calculus	100		
	3.5.	The impact of Fourier series on mathematical analysis	104		
	3.6.	Cauchy's analysis: limits, infinitesimals and continuity	109		
	3.7.	On Cauchy's differential calculus	111		
	3.8.	Cauchy's analysis: convergence of series	116		
	3.9.	The general convergence problem of Fourier series	122		
	3.10	Some advances in the study of series of functions	127		
	2 11	The impact of Riemann and Weierstrass	131		
	2 12	The importance of the property of uniformity	133		
	2 12	The post-Dirichletian theory of functions	138		
	3.14.	Refinements to proof-methods and to the differential calculus	141		
	3.15.	Unification and demarcation as twin aids to progress	145		
4.	. The origins of modern theories of integration Thomas Hawkins				
		A HOMEO ARTHURA	4.10		
	4.1.	Introduction	149		
	4.2.	Fourier analysis and arbitrary functions	150		
	4.3.	Responses to Fourier, 1821–1854	153		
	4.4.	Defects of the Riemann integral	159		
	4.5.	Towards a measure-theoretic formulation of the integral	164		
	4.6.	What is the measure of a countable set?	172		
	4.7.	Conclusion	180		

	Time	development of Cantorian set theory	
		Joseph W. Dauben	
	5.1.	Introduction	181
	5.2.	The trigonometric background: irrational numbers and derived sets	182
	5.3.	Non-denumerability of the real numbers, and the problem of dimension	185
	5.4.	First trouble with Kronecker	188
	5.5.	Descriptive theory of point sets	189
	5.6.	The Grundlagen: transfinite ordinal numbers, their definitions and laws	192
	5.7.	The continuum hypothesis and the topology of the real line	197
	5.8.	Cantor's mental breakdown and non-mathematical interests	199
	5.9.	Cantor's method of diagonalisation and the concept of coverings	203
		The Beiträge: transfinite alephs and simply ordered sets	206
		Simply ordered sets and the continuum	210
		Well-ordered sets and ordinal numbers	212
		Cantor's formalism and his rejection of infinitesimals	216
	3.14.	Conclusion	219
	Deve	lopments in the foundations of mathematics, 1870–1910 R. Bunn	
	6.1.	Introduction	220
	6.2.	Dedekind on continuity and the existence of limits	222
		Dedekind and Frege on natural numbers	226
		Logical foundations of mathematics	231
		Direct consistency proofs	234
		Russell's antinomy	237
		The foundations of Principia mathematica	240
	6.8.	Axiomatic set theory	245
	6.9.	The axiom of choice	250
1	6.10.	Some concluding remarks	255
	Biblio	ography	256
	Name	e index	283
	Subje	ct index	291

2.000	development of Cantorian set theory	
	Joseph W. Dauben	
5.1.	Introduction	181
5.2	The trigonometric background: irrational numbers and	182
	derived sets	
5.3.	Non-denumerability of the real numbers, and the	185
	problem of dimension	
5.4.	First trouble with Kronecker	188
5.5.	Descriptive theory of point sets	189
5.6.	The Grundlagen: transfinite ordinal numbers, their	192
	definitions and laws	40-
5.7.	The continuum hypothesis and the topology of the	197
5.8.	Cantor's mental breakdown and non-mathematical	100
20.00	interests	199
5.9.	Cantor's method of diagonalisation and the concept of	203
	coverings	203
5.10.	The Beiträge: transfinite alephs and simply ordered sets	206
	Simply ordered sets and the continuum	210
	Well-ordered sets and ordinal numbers	212
5.13.	Cantor's formalism and his rejection of infinitesimals	216
5.14.	Conclusion	219
-		
Lieve	dopments in the foundations of mathematics, 1870–1910	
	R. Bunn	
	Introduction	220
6.2	Dedekind on continuity and the existence of limits	222
	Dedekind and Frege on natural numbers	226
	Logical foundations of mathematics	231
	Direct consistency proofs	234
	Russell's antinomy	237
	The foundations of Principia mathematica	240
6.8.	Axiomatic set theory	245
	The axiom of choice	250
6.10.	Some concluding remarks	255
Віббі	ography	256
Name	index	283
Subje	et index	291